Kolmogorov Widths on the Sphere via Eigenvalue Estimates for Hölderian Integral Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Estimates Using the Kolmogorov-Sinai Entropy

The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues ofA and A+V.

متن کامل

Eigenvalue Estimates for Random Schrödinger Operators

where γ ≥ 0 for d ≥ 3, γ > 0 for d = 2 and γ ≥ 1/2 for d = 1. The estimate (1.1) is called the classical Lieb-Thirring inequality. One needs to remark, that although for any V ∈ L the eigenvalue sum ∑ j |λj| converges for both V and −V , it follows from our results that converse need not be true. The sum ∑ j |λj| can converge even for potentials that are not functions of the class L . In the pr...

متن کامل

Jackson Kernels: a Tool for Analysing the Decay of Eigenvalue Sequences of Integral Operators on the Sphere

Decay rates for the sequence of eigenvalues of positive and compact integral operators have been largely investigated for a long time in the literature. In this paper, the focus will be on positive integral operators acting on square integrable functions on the unit sphere and generated by a kernel satisfying a Hölder type assumption defined by average operators. In the approach to be presented...

متن کامل

Eigenvalue Estimates for Schrödinger Operators on Metric Trees

We consider Schrödinger operators on regular metric trees and prove LiebThirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.

متن کامل

On Eigenvalue and Eigenvector Estimates for Nonnegative Definite Operators

In this article we further develop a perturbation approach to the Rayleigh– Ritz approximations from our earlier work. We both sharpen the estimates and extend the applicability of the theory to nonnegative definite operators . The perturbation argument enables us to solve two problems in one go: We determine which part of the spectrum of the operator is being approximated by the Ritz values an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2019

ISSN: 1422-6383,1420-9012

DOI: 10.1007/s00025-019-1000-4